
Finding Map Feature Correspondences in Heterogeneous
Geospatial Datasets

Abhilshit Soni
 Applied AI & ML Group

 HERE Global B.V.
 Mumbai MH IN

 abhilshit@gmail.com

Sanjay Boddhu
 Applied AI & ML Group

 HERE Global B.V.
 Chicago IL USA

 sanjay.boddhu@gmail.com

ABSTRACT
In an automated map making process, map features like lane-
markings, traffic-signs, poles, stop-lines and similar other features
are extracted using deep learning methods from various sources
of imagery or sensor data. These sources come with their own
positional errors due to which the map features extracted from
these sources are always misaligned with respect to each other,
making the conflation of map features a difficult task. We propose
a novel method to find map feature correspondences between 2
sets of map feature datasets obtained from different sources by
first converting them into a heterogeneous geospatial graph and
then doing node representation learning using a graph neural
network that can generate vector embeddings that encode
information of morphology, attributes, and absolute and relative
positions of the map feature with respect to its neighbours along
with aggregated information from its neighbours. This process
can be employed to generate embeddings of map feature nodes,
which are amicable to identifying spatially similar and
corresponding map feature nodes across disparate sources with
varying degree of similarity scores. When applied aptly, these
map feature correspondences between two sources can be used as
anchor points to perform spatial alignment with linear or non-
linear transforms, leading to a better conflation.

CCS CONCEPTS

Information systems Information systems applications
Data mining • Information systems Information

systems applications Spatial-temporal systems
Geographic information systems • Mathematics of

computing Discrete mathematics Graph theory
Graph algorithms

ACM Reference format:
Abhilshit Soni and Sanjay Boddhu 2022. Finding Map Feature
Correspondences in Heterogeneous Geospatial Datasets. In Proceedings of
1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge
Graphs (GeoKG 2022) November 1st, 2022, Seattle, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3557990.3567590

KEYWORDS
Map Fusion, Conflation, Alignment, Geospatial Graph

1 Introduction
Over the years map making companies have evolved to automate
the process of map making which was erstwhile manual and a
tedious job. A modern-day HD map usually contains accurate
information of geometric map features including, but not limited
to, road geometries, lane geometries, traffic signs, stop-lines,
crosswalks, road surface markings etc. As part of automated map
making process, such features are extracted automatically using
deep learning algorithms from various sources of imagery and
sensor data. These sources are usually street imagery, car sensor
data or high-resolution aerial or satellite imagery, terrestrial or
aerial LiDAR data etc. The data extracted from such sources come
with their own positional errors that are caused mainly due to
quality and configuration of sensors and the methods used to
record and post process the captured inputs. Due to this, the
features observed/extracted from these sources are usually
misaligned with respect to each other. Also, the data obtained
using deep learning algorithms when applied on a single source is
a lot of times incomplete due to the nature of the source itself. For
example., Aerial imagery may have occlusions like tree cover
preventing the complete detection of lane markings or road
boundaries. Similarly, in street imagery captured by a car with a
camera mounted on the top or a dashcam can have temporary
occlusions like a big vehicle in the side or front that may prevent
the view of road surface or a traffic sign. Hence, map making
companies usually rely on data obtained from multiple sources to
build maps.

In a manual or semi-automated map making process a human
operator creates or reviews map data from multiple sources, and
then creates a final version of map data by fusing data from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

GeoKG '22, November 1, 2022, Seattle, WA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9538-0/22/11…$15.00
https://doi.org/10.1145/3557990.3567590

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

multiple data sources manually. While, if the data is assumed to
be well aligned, an automated conflation process becomes an
easier task which can be achieved by clustering of map features
and by filling gaps in data from one source, based on the inputs
from another source and calculating the resultant attributes based
on consensus. However, this important step of multi-source
fusion in an automated map making process, becomes a
challenging task as features from these sources are misaligned
spatially and may not be amicable for spatial clustering
techniques. Thus, one must align data from 2 misaligned
geospatial datasets so that they get closer to each other, and then
execute the semantic conflation process to derive final geometry
or attributes of the fused map features.

A common way of doing alignment is by using manually surveyed
ground control points as anchor points. These anchor points are
used to estimate transforms between the dataset and ground
control points. For example, if a dataset A is to be aligned with
dataset B, with an input set of ground control points G. A
transform is estimated between corresponding point features in
dataset A with G and then A is transformed using the estimated
transform. Similarly, a transform is estimated between
corresponding point features in B and G and then B is transformed
using the estimated transform. Thus, A and B both get aligned
independently to G, and as a result A and B gets aligned with
respect to each other. The ground control points are usually
supplied by third party vendors who perform manual physical
surveys of some key map features like traffic signal, pole, or traffic
sign etc. Collecting ground control points in every area of interest
is an expensive process and hence not scalable for those regions
where survey capabilities are not available.

An alternate approach to do alignment is to estimate feature
correspondences between dataset A and dataset B directly and use
the matching features as anchor points or control points to
estimate a transform of one dataset with respect to the another.
Using the estimated transform one of the datasets is transformed
so that it aligns to another dataset. The transforms estimated in
both the approaches can be linear or non-linear depending on the
nature of the data. The focus of this paper is on this approach of
the alignment as it involves identifying inter-source map feature
correspondences in form of anchor points which are precursors to
estimate transforms of one dataset with respect to another. The
key contributions of this paper are summarized as given below.

• To the best of our knowledge, we present the first method to
construct a heterogeneous geospatial graph from a
heterogeneous geospatial dataset that can have incomplete
or noisy features and it also accounts for linear features in
graph by processing them in a certain manner. This graph
can be used to perform many other types of geospatial graph
mining operations apart from the use case that is covered in
this paper.

• Once the graph is constructed, we generate neighbor
aggregated vector embeddings using a prominent inductive
Graph Neural Network algorithm, GraphSAGE [1] that gives

us vector embeddings corresponding to every map feature
node in the graph that encodes the information about the
morphology, attributes, relative and absolute position of
itself with respect to its neighbors and aggregated with
similar information passed from its neighbors and neighbor’s
neighbors.

• In this way we try to identify similar situations in 2
geospatial datasets by calculating the distance between their
neighbor aggregated node (map feature) vector embeddings
using a similarity metric like Manhattan Distance weighted
by a proximity factor.

• We also publish our results of map feature correspondences
on real dataset of map features extracted from different car
sensor data, street imagery data and aerial data.

The intuition behind this algorithm can be explained with an
example below. Let’s assume that there is a no-right-turn traffic
sign situated at a junction in a dataset A. In its neighborhood there
is a traffic signal, a striped crosswalk, a stop-line, a road boundary
and a solid yellow lane boundary that are existing at a certain
distance, angle, and position. We create a geospatial graph of this
dataset and generate neighbor aggregated embeddings of this
traffic sign. The embeddings are generated in such a way that it
includes information about the type and attributes of the no-right-
turn sign itself, aggregated with type and attributes of other
features in neighborhood, along with the distance between them,
their absolute positions and angle with respect to a reference axis.
If a similar scenario exists for a no-right-turn sign in dataset B
their embeddings would be similar. Thus, yielding a match. If we
get a significant amount of such confident matches these matches
can be used as anchor points to estimate transforms to transform
dataset A to B or from B to A. The heterogeneous geospatial
datasets used for the work done related to this paper involves map
feature types mentioned in Table 1.1 along with their geometric
representations.

Table 1.1 Map Feature Types & geometric representations

Map Feature
Type

Geometric
Representation

Subtypes /
Attributes

Lane Markings Polyline Yellow, white, solid,
dashed

Road Boundary Polyline -
Traffic Sign Point Speed limit,

restricted driving,
silent zone, hazard
etc.

Road Barrier Polyline Guardrail, Jersey
Barrier etc.

Pole Point -
StopLine Polyline -
Crosswalk Polyline Striped, Solid
Road Surface
Marking

Point Direction Arrows,
bicycle/bus lane etc.

Traffic Signal Point -

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

More map feature types can also be added if the data of the same
is available from sources for which we want to find the map
feature correspondences.

The rest of this paper is organized as follows. In section 2, we
report the important related work and existing approaches used
to solve similar problems. In section 3, we discuss a common step
of scaling and normalization of data applicable to both linear and
point features. In section 4 we describe the data preparation step
to be performed for linear map features. Section 5 describes the
data preparation step for point features. In section 6 we describe
the algorithm to prepare the geospatial graph. In section 7 we
describe the method to generate the node representations i.e.,
neighbor aggregated vector embeddings corresponding to each
map feature in the geospatial datasets. Section 8 describes the
similarity metric used to calculate distance between vector
embeddings of map features in 2 geospatial datasets to identify a
match. Section 9 describes the experimental setup used for using
this method on real world datasets and the results obtained on the
same. Section 10 describes the conclusion and future scope of this
work which is followed by acknowledgements and references.

2 Review of existing work
A lot of research work has been done to conflate map data from 2
sources. To the best of our knowledge all existing work deal with
conflation of geospatial datasets where map features are conflated
in isolation without confirming their presence in conjunction
with their neighbors. Validation of presence of map feature in
conjunction with respect to its neighbors becomes important if
the datasets have false-positives, which is usually the case when
data is obtained through an automated map data extraction
process. Such false positives should not be accounted for, while
estimating the transforms between 2 datasets. With the evolution
of deep learning algorithms, advances in automated map data
extraction have only been possible recently. Hence, even though
this topic has been worked upon over several years, this work
becomes different from the other work as aligning geospatial
datasets by converting them into a heterogeneous geospatial
graph has not been done earlier. Since there are huge number of
papers which are related to topic of conflation of geospatial
datasets, it is not possible to discuss all of them in this section.
Hence, those relevant to this work have been explained which
includes papers related to conflation and alignment algorithms,
graph related algorithms, deep learning algorithms and
autoencoders which forms the basis of the work done as part of
this paper.

(Gabay, 1994) [4] introduced a method to match the
corresponding polylines between two different maps defined in
different locations and topological characteristics. This was used
for combining maps from several sources into a uniform database
without geometrical and/or topological contradictions. Based on
the identified set of matching entities from the different maps,
they presented an automatic approach to correct and adjust the
polylines from one map in order to make their locations more

accurate, relative to another map. (Filin and Doytsher 1999) [20]
proposed a method of matching road junctions using a point
matching algorithm. Then the topology of polylines connected to
the points were used to propagate matches to the lines. (Gabay
and Doytsher 2000) [21] proposed a polyline conflation algorithm
where polylines from one dataset are buffered and if the polyline
from another source falls completely within the polygon created
by the buffer the 2 polylines are considered to be matching pairs.
A lot of work has been done related to aligning road network from
a map data source to another road network from another map data
source [5, 7, 18] or aligning road network to a satellite or aerial
rasters [6], and also for aligning point clouds using point
correspondences and ICP [10]. (Deretsky, 1993) [11] used a chain
of arcs technique modelling the attribute and geometry for every
feature in form of arcs, so that given 2 maps both maps become
partitioned by the chains into much smaller pairwise matched
areas called wards. The conflated map is then produced by starting
with one of the input maps and attribute information from
matched chain and wards is transferred to the conflated map
according to a set of user configurable rules. (Dongcai, 2013) [13]
defined a framework of vector spatial data conflation in multi-
source vector space and discussed the flow of the conflation of
attribute data and geometry data. They had identified prominent
matching methods as geometric matching and semantic matching.
They also describe a deterministic algorithm which can be used
for feature matching based on linear feature and point feature
matching based on their respective topologies.

 (Doytsher 2013) [19] presented an algorithm for ad-hoc
integration of road vector data, where roads are represented as
polylines, but their algorithm uses only the endpoints of polylines
and not the whole polylines.

(Heimann 2018) came up with The REGAL [17] or Representation
based Graph Alignment Framework which was the first
framework to formulate unsupervised graph alignment problem
as a problem of learning and matching node representations that
generalize to multiple graphs. It was defined as a generic approach
that can be applied to any type of graphs. (Faerman, 2019) [18]
used road junction point features to first generate a road junction
node graph using the road network obtained from OpenStreetMap
and a proprietary map data provider and uses a graph neural
network to do node representation learning on it. The road
junction nodes are then matched based on the similarity score
calculated by calculating distance between their embeddings.

 (Goyal, 2017) [14] summarized all node, graph and edge
embedding methods in a survey of papers. (Kipf, 2017) [16]
Introduced the Graph Convolutional Neural Networks (GCN) and
(Bronstein, 2017) [9] introduced the idea of geometric deep
learning on networks of data which laid the foundation of
learning on data which is in represented in form of graph or
networks. (Liu, 2020) [2] introduced the idea of graph neural
networks that can be used to find neighbour aggregated and
learned representations of graph components like edges and
vertices by accumulating information from its neighbours. While

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

Node2Vec [15] introduced the idea of generating node vector
representations for a graph. Node2Vec was not an inductive
method, which means it does not work on unseen nodes of the
graph that can be added in the future. GraphSAGE [1] was
proposed as an inductive learning method for graph node and
edge representation learning. (Zhou, 2020) [3] presented a review
of methods in graph neural networks which also details gathering
data for unsupervised learning on graphs, which was a good
reference point to start for our problem statement as this involves
unsupervised graph node representation learning.

(Yao 2017) [8] described a trajectory clustering method which uses
LSTM [12] to generate latent representations of trajectory
polylines for clustering similar trajectories.

3 Data scaling and normalization
The data extracted from different source may arrive randomly
based on how it is ingested into the alignment and conflation
system as an input. Hence, we must decide a unit of work on
which we need to match data from 2 different geospatial datasets
that needs to be merged. This unit of work can be a common or a
proprietary tiling scheme that defines all data falling within that
tile to be fused or conflated after performing the alignment. For
our work we used HERE’s tiling scheme, however any prominent
tiling scheme as a unit of work can be used to replicate work of
this paper. A tile is just a bounding box for which you have
obtained geospatial datasets from 2 different sources between
whom we need to find map feature correspondences. This
bounding box tile will have a minX, minY, maxX and maxY
representing the lower left and upper right corners, using which
all other corners of the tile can be derived. It is easier to work with
meter-based coordinates hence we first converted all the latitude
longitude values representing linear and point features which
were in WGS84 EPSG:4326 to their corresponding UTM zone
projected coordinates. These UTM projected coordinates were
then scaled in a fixed range of 0 to 10 using (minX, minY) as (0,0)
and (maxX, maxY) as (10,10). In theory any other smaller range
should also yield similar results.

The attributes of each linear and point feature were normalized to
prepare initial attribute feature vectors. The attribute vector is a
standard vector with numerically encoded or enumerated values
of all type of attributes existing across linear and point features.
For example, a sample attribute vector may look like enumerated
version of following

Where, applicable values are populated based on normalized
enumerated values.

For example, a Sign type may correspond to Speed Limit Sign
which can have an enumerated value of 1 and a restricted driving
sign may have an enumerated value of 2 and likewise. If the
feature is a Sign, the attribute vector will have non applicable
values set to a default value of 0. For example, lane color is not
applicable to a Sign type map feature, hence it would be populated
as 0 which depicts an enumerated value corresponding to “Not
Applicable”. Features like road boundary, stop line, pole and
traffic signal did not have any associated attributes or subtype
categorization in our data hence for them the attribute vectors
would be filled up with all zeros. However, when we construct the
geospatial graph the node types are populated based on the
feature types, so, the type information of these features is
captured over there.

4 Data preparation for linear features
Linear map features like lane markings, road boundary, barrier
geometries etc. are represented by a polyline. In different
geospatial datasets that are obtained from different sources, same
linear features can have different sampling rates of shape points.
Which means that if a linear feature like a lane boundary is 100
meters long and is present in datasets A and B the polyline
representing same lane boundary were represented with unequal
number of shape points in both the datasets. To deal with this we
decided to perform following steps to pre-process such linear
features of each of the datasets.

Point features like Poles can be used to localize where we are on
an adjacent linear feature. Poles are usually on the sides of road
and are also on the center divider on a bi-directional road. They
are usually placed at a regular interval, hence they become a good
candidate point features to localize where we are on a linear
feature like a road boundary, road barrier or a lane boundary.
Signs, could also be used, but Signs may or may not be present on
every road and also a lot of times multiple signs are posted on the
same sign post or overhead banner, this could be a problem as
there are chances that an automated map data extraction system
might not be able to capture all of them correctly since there are
multiple different sign types observed at same location in such a
scenario. Hence, we decided to use Poles only for this work. We
buffer each polyline laterally based on a threshold of 3 meters and
check if there are any poles in that buffer. If poles are found then
perpendicularly project them onto linear features to break them
into multiple polylines. Threshold of 3 meters is taken considering
worst-case scenario of a single lane road, with parallel poles on
both sides of the road. In such a case the road boundary on each
side of the road should only get cut by the pole on that side and
not by the pole on the opposite side to avoid double cuts. If the
number of lanes is known upfront, this threshold can be
appropriately configured.

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

Figure 4.a Method of cutting linear features based on
perpendicular projection of point features in lateral buffer

In the scenario presented in Figure 4.a, a road has 2 road
boundaries and one lane boundary depicted by yellow solid lane
marking. There is also a pole in the 3 meters buffer of one of the
road boundaries and hence the pole is perpendicularly projected
onto that road boundary and the polyline representing the road

boundary will be broken into 2 polylines Start Projected_Pole

and Projected_Pole End.

Cutting the linear feature in such a way increases the chances of
finding a greater number of confident matches in the map feature
matching process. The intuition behind doing this operation is
that if in the above case if a confident match is found for the pole,
there would be a confident match found for the linear patches of
road boundary also that are created after perpendicularly
projecting the pole onto it.

The second step of this process is to encode the polylines into a
fixed 128-dimensional vector using a generative autoencoder like
LSTM [12]. In earlier works LSTM Autoencoders have been used
to encode linear features like vehicle trajectories [8] and their
learned latent representations have been used to find similar
trajectories by clustering them based on their embeddings. We use
the same concept to encode polylines. Only difference between
trajectories and polyline features like road boundaries or lane
boundaries is that trajectories always have an associated direction
of travel information, and their coordinates are always in order of
the direction of travel. However, the lane boundary or road
boundary extracted from certain sources may or may not have
direction of travel information and their order of coordinates may
not represent the actual direction of travel for lanes or roads.
Lanes can go in opposite directions on a bidirectional road and
when they are detected from aerial imagery or street imagery the
order of coordinates of their geometry that are derived may not
represent the actual direction of travel applicable for that lane. So,
it may be possible that a lane boundary that goes from point A to
point B is represented in another dataset in the order of point B to
point A. Since the order of coordinates are reversed their
embeddings generated by the autoencoder will not be same. LSTM
encodes sequence of coordinates in their given order, if the order
of coordinates are different, then their learned embeddings are
also different . So, to deal with this issue we first modify the order
of the coordinates of polylines so that they stay uniform in both
the data sets.

To achieve this, we first iterate over every polyline and compare
their start point S of the coordinate sequence with the end point
E of the coordinate sequence. We first compare whether latitude
of S < latitude of E if yes then we keep the order of coordinate
sequence from S to E, else we reverse the coordinate sequence so
that it becomes a polyline starting from E and ending at S. In case
where the latitudes of S and E are equal, we compare the longitude
by checking if longitude of S<longitude of E, if yes, then we keep

the order of coordinate sequence from S E, else we change it by

reversing it so that it becomes E S. This reordering is only
needed if the order of coordinates in both datasets to be fused are
not uniform. Once the reordering is done, we encode the
reordered polylines using a polyline autoencoder which is a
generative LSTM autoencoder described in the section 4.1

4.1 Polyline Autoencoder
Given that same polyline features may have different sampling
rates, a generative LSTM autoencoder is capable of learning the
latent representation of geometric shape and structure i.e.,
morphology and position represented by a sequence of
coordinates irrespective of its sampling rate. For example,
consider that dataset A, B and C are having the same lane
boundary polyline extracted from 3 different sources respectively.
They will have different sampling rates; however, the learned
latent representation should be same for all 3 of them irrespective
of sampling rate. Which means that autoencoders will learn the
signal in the data represented by sequence of coordinates
representing a polyline by discarding the noise added by different
sampling rates.

To achieve this goal, we used a generative LSTM autoencoder that
was trained to reproduce a given input polyline itself. Once it
learns to generate itself, the latent space will hold the information
on how to compress a given polyline into a fixed dimensional
vector irrespective of its length, shape, structure, and number of
shape points. The method used to train the polyline encoder is
explained below.

20000 polylines initially were selected to train this model. These
polylines were resampled at 1 point per meter rate. Additional
multiple sets of this original set were created by resampling at
rates of 10 meters, 15 meters, 20 meters and 25 meters. Hence total
20000x5 sets = 100000 were used as training data input. The labels
used for training were 20000 x 5 sets of lines resampled at a fixed
sampling rate of 10 meters. Augmentation was done to add
random noise in this original input by deviating the longitude and
latitude values by a random offset range within 1 meter and thus
final labels of 100000 polylines were obtained. This augmentation
was done to ensure that a polyline which are similar or even if it
has a certain offset then the autoencoder produces an embedding
vector which is closer to the representation of original polyline.
We left padded the inputs with 0 as the length of different
coordinates sequences representing different polylines will not be
same. Same kind of padding was also done for labels. Since the

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

maximum count of coordinates in the largest linear feature after
equidistant resampling was 2560, we decided to left pad all other
features smaller than that to match that length. Hence the shape
of training data was (n, 2560, 2) where n is the sample count and
2650 is length of coordinates for each sample and 2 is the number
of values in each coordinate tuple i.e., x and y (which is nothing
but the scaled longitude and latitude after they were converted to
UTM projection)

We used a contrastive loss function instead of MSE (Mean squared
Error) as used in the original paper by (D. Yao, 2017) [8]. Since
contrastive loss is more suitable while you want to map vectors
that model the similarity of input items. Which is what was
required in our case. Contrastive loss is mathematically described
as follows.

Here,

• Y is the value of our label,
• D is the Euclidean distance between input and label

embeddings
• max is the function that gives maximum between (margin -

D) and 0
• The margin defines a radius around the embedding space of

a sample so that dissimilar pairs of samples only contribute
to the contrastive loss function if the distance D is within the
margin

The model used is a combination of 2 LSTM networks, an LSTM
encoder network, and an LSTM decoder network. The model uses
a masking layer to ignore the values of mask while calculating the
loss. To propagate the mask across all layers, a custom LSTM
bottleneck layer was implemented that copies over the mask
across the RepeatVector layer and propagates it to the decoder.
The model uses a left padded 2560 length sequence of coordinates
as input and encodes it to 128-dimensional vector in the
bottleneck layer and decodes back a 2560 length coordinate
sequence representing the same polyline that was provided as
input. Refer the model architecture diagram in Figure 4.b.

Figure 4.b Polyline Autoencoder Model Architecture

Once the model is trained, we only need the encoder part of the
model to encode the polylines into 128-dimensional vector and

Repeatvector and Decoder parts were pruned from the network to
make the inference faster. The encoder model was then used for
creating 128-dimensional vector embeddings for all linear features
of the geospatial datasets for which we were to find map feature
correspondences. We also prepare a scaled position vector
depicting the scaled position (x, y) of the starting point of the
linear feature obtained after the preprocessing and reordering as
described in section 4. To incorporate the angle aspect in the
feature vectors, we use the angle formed between line segment

(minX, minY) (minX, maxY) of the tile, to line segment (minX,

minY) (x, y) and append it position vector like

which in turn is appended to the attribute vector and result of
which is again appended with 128-dimensional embedding vector
as obtained above. The resultant feature vector looks like,

To summarize with an example, let’s assume we have 2 geospatial
datasets obtained for same tile. We first normalize and scale the
coordinates, prepare their attribute vectors for both point and line
features, preprocess the linear features by cutting them based on
point features existing in the vicinity and obtain the 128-
dimensional embeddings for its resultant linear features. A
position vector is prepared for each of these linear features which
has scaled x and y values and angle with respect to a reference
axis, which is then appended to the attribute vectors of linear
features and a result of which is then appended to the 128-
dimensional embeddings of the linear feature to obtain final
feature vector for linear features. Thus, the final vector produced
for each linear feature has information related to its
morphological features, attributes and position.

5 Data preparation for point features
Point features don’t have shape and structure like linear features.
Hence, they can be defined just by their position vector appended
to its attribute vector. However, to perform neighborhood data
aggregation we must keep feature vectors of linear and point

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

features to be of same dimension. Hence, we used a 128-
dimensional zero vector for point features appended by their
attribute vector and position vector as a final feature vector for
point features as shown below.

Once the final feature vectors of linear features and point features
are obtained using the method described in section 4 and section
5, they are used to produce neighbor aggregated feature
embeddings using a graph neural network. But to do that we need
to first construct the graph which is described in the section 6
below.

6 Geospatial Graph
Algorithm-1 describes the method that is used to build the
geospatial graph. The algorithm accepts a geospatial dataset
which is a collection of map features for a given tile where feature
vectors are prepared as described in section 3, 4, 5 and outputs a
geospatial Graph G. The steps of the algorithm are described
below.

1. A KD-Tree based spatial index is constructed so that we can
easily query what features are in neighborhood of a given
feature in certain radius threshold of T meters.

2. An empty graph is initialized.
3. T is defined as 20 meters here so that only features within

that threshold get connected to each other through an edge
since they are considered neighbors.

4. Iterate over each map feature fi in the input dataset
5. Find who is in the neighborhood within radius T for each

feature fi and store it in Ni
6. Check whether G has node fi added already in the graph
7. If node is not in G, add it. We also populate the node type

with the type of map feature we are adding as a node along
with its attributes.

8. Define an empty dataframe that can hold neighboring nodes,
its type, and its weights and distance from fi.

9. Iterate over all neighbors nj present in Ni, which are
neighbors of fi.

10. Check if these neighbor nodes are present in the graph or not
11. If node is not present in the graph, we add it along with its

type and attributes

Algorithm 1: Algorithm to construct geospatial graph

 Input: A geospatial dataset that is collection of map features F
with their respective feature vectors V

 Output: A graph G with map features as nodes along with node
attribute vectors and edges created between them

1 Construct a KD-Tree based spatial index S using map features F

2 Initialize: an empty Graph G

3 Initialize: distance radius in meters threshold T = 20

4 for fi in F: // iterate each feature in collection of map features

5 Ni = S.query_radius(fi, T) //where, Ni are neighbors of fi in T

6 if not G.has_node(fi):

7 G.add_node (fi, type = fi.type, attributes = fi.vi)

8 Initialize: dataframe dfij of node and its type, weight,
distance

9 for nj in Ni: //iterate each neighbor of fi

10 if not G.has_node(nj):

11 G.add_node (nj, type = nj.type, attributes = nj.vj)

12 if both fi and nj are Point features

13
d = // Euclidean dist

14 else if one of fi or nj is a Polyline and one is Point
feature:

15 pp = perpendicular_project_point_on_line (fi, nj)
//perpendicular projection of point feature on
polyline

16
d =

17 else if both are polyline features:
18 d = hausdorff_distance(fi, nj)
19 wij = // calculate weight

20 dfij.append(nj, nj.type, wij, d)

 end
21 dfij = dfij.sort_by(wij, descending=True) //sort all

neighboring nodes by weight

22 dfij = dfij.unique(nj.type, keep_first = True) // retain first
unique .
//nodes by node type

23 for unique_nearest_neighbour, w in zip (dfij.nij, dfij.wij)

24 G.add_edge (fi, unique_nearest_neighbour, weight = w)

 end
 end

25 return G

12. Check If the feature fi and its neighbor nj are both point

features
13. If both fi and nj are point features, then calculate the

Euclidean distance between both.
14. Check if either feature fi or its neighbor nj is a Point feature

and other one is a Line Feature.
15. If yes, then project the point feature on the line feature
16. Find perpendicular distance from Point to its projection.
17. Check if both are linear features
18. If yes, then calculate Hausdorff Distance between both.
19. Calculate weight value that is inversely proportional to D

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

20. Populate the dataframe with the calculated information for
each node and its neighbors.

21. Sort the dataframe by its weight in descending order
22. Filter unique features based on feature type
23. Iterate over each unique node and column
24. Add edge between them. Repeat for all remaining features of

input dataset.
25. Return the generated graph for the input dataset.

Since, we have 2 datasets to deal with for finding map feature
correspondences amongst them, we repeat the same process for
second dataset and thus prepare graph for each dataset.

7 Generating node representations
Once a graph is prepared, we need to learn the neighbour
aggregated embeddings based on the neighbourhood information
present in the graph. So that the neighbourhood learned
embeddings will help us find matching nodes in both geospatial
graph datasets.

The idea behind this can be well explained with an example of a
Traffic Signal, which is in the neighbourhood of a crosswalk, a
stop-line and a speed limit sign at a particular location in Graph
‘A’. The same traffic signal is also present with similar
neighbouring features in Graph ‘B’, the embeddings generated for
Traffic Signal would be aggregated embeddings of itself and its
neighbours, which will encompass information of shape,
structure, attributes and position of itself and its neighbours. The
distance between neighbourhood aggregated vector embeddings
for the traffic signal in both the graph is an indicator of how
confidently we can say that this Traffic Signal in Graph A is same
as the Traffic Signal in Graph B. This is the reason why we need
to learn neighbourhood aware embeddings.

This can be done by aggregating the embeddings of neighbours
using an aggregation function. However, the concern is that this
approach needs to be inductive. (Goyal, 2017) [14] presented a
survey of prominent graph and node embedding generation
techniques which include Matrix Factorization, Laplacian
Eigenmaps, Random walk, Spectral decomposition along with
other methods including the one proposed by (Grover, 2016) [15]
which is Node2Vec. However, these methods are transductive
which means they don’t work well on unseen data or nodes which
can be added into the graph in future. Using and inductive method
will help speed up inference times on data belonging to other tiles
which model is not trained on. (Hamilton, 2017) [1] presented
GraphSAGE (Graph SAmple and AggreGatE) which can learn an
inductive representation of nodes in a graph. GraphSAGE learns
representation of every node by aggregating the representations
of neighbours. As of today, there are many out of the box
implementations of GraphSAGE available in prominent graph
learning software packages. We used an existing GraphSAGE
implementation as is for generating the embeddings for our graph
nodes.

GraphSAGE can be trained in both supervised and unsupervised
fashion. In our case we used an Unsupervised GraphSAGE which
can learn embeddings of the nodes using only the graph structure
and the node features, without using any known node class labels.
We used a technique to generate the training data of GraphSAGE
in an unsupervised manner. With this method the training
samples are generated by performing uniform random walks over
the graph where Positive (target, context) node pairs are extracted
from the walks, and for each positive pair a corresponding
negative pair (target, node) is generated by randomly sampling
nodes from the degree distribution of the graph. It finally yields a
positive and negative node pairs along with their respective 1/0
labels. Using this method, we generated equal number of positive
and negative node pair samples from the graph for training. We
used 3 random walks per node with a walk length of 7 to generate
such positive, negative training data pairs.

We trained a GraphSAGE link predictor model using data of 10
level 14 HERE Tiles which were a mixture of map features
obtained from 2 different sources including car sensor data from
2 separate car sensor data providers and aerial data. As a by-
product of which it learns to generate the neighbour aggregated
node embeddings inductively. The accuracy of link prediction
obtained on a hold-out dataset was consistently greater than 70%
in all our experiments, which implies that it can learn the node
representations correctly.
Once the neighbour aggregated embeddings are obtained by
running inference on the trained GraphSAGE model on graphs
obtained from 2 separate geospatial datasets, the similarity
between the nodes can be calculated by calculating distance
between their embeddings.

8 Calculating node similarity
A proximity weighted Manhattan distance is used to calculate
distance between node embeddings generated as part of process
described in section 7. Manhattan distance is generally a good
metric to use when dimensions of vectors are larger and is defined
by the formula:

Here, X, Y, …. N are the dimensions of the vectors

We also define a proximity weight coefficient () as

Where, d is the distance value calculated in step 13,16 or 18 of
Algorithm-1. Using both the above formulas, we define a node
match confidence score function as

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

9 Experimental setup and results
We conducted 2 separate experiments to test our hypothesis of
finding map feature correspondence in heterogeneous geospatial
graphs using node representation learning.

In our first setup we used data obtained from 3 different sources
from a set of 50 level-14 HERE tiles around an urban region from
Western Europe with approximately 4km2 of area per tile which
totals to 200km2 of total area. The sources of data were, two
different car manufacturers using 2 different type of camera, GPS
and IMU sensors and the 3rd source was map features extracted
from HERE’s own street imagery dataset. For the confidentiality
purposes, let’s refer the two car manufacturers providing car
sensor data as C1 and C2. So, C1, C2 and HERE all 3 sources had
data available for those 50 tiles with all the feature types described
in Table 1.1. This data was used as a hold-out dataset that was
separate from the data used for training the GraphSAGE and
polyline Autoencoder models which was as described in their
respective sections. On analyzing the datasets from these three
sources, we found that an average misalignment between any 2
pairs of sources is not more than 4 meters. Hence, we also decided
to create a second experimental setup where used dataset of C1
and C2 and augmented one of C2 dataset by adding fixed offset of
10 meters to its original positions and we also dropped certain
percentage of map features, and we ran our tests on both the
original and the augmented dataset as we kept on dropping nodes
from the augmented graph. For both the setups, we generated the
neighbor aggregated embeddings using our method for all the
datasets after converting them into geospatial graphs using the
algorithm we have proposed. Then we measured the percentage
of highly confident map features obtained between pairs of these
datasets by putting a cut-off value on the match confidence score.
We measured how many map features are matched correctly at
different threshold values of confidence score by manually
analyzing the same. Table 9.1. shows the percentage of matching
features with high confidence in given source pairs.

Table 9.1. Percentage of matching features with different
confidence score cut-offs and source dataset pairs

The “% match” column indicate % of how many total nodes
matched in graph of source#1 to nodes in graph of source#2. The
column “% correct” is the % of correct matches out of the total
found matches at that confidence cut-off score.

At the confidence score cut-off of 75% the percentage of overall
matches is more than 50%, across the combination of various data
sources. At this threshold all matches are highly confident
matches with very minimal ~2% incorrect matches. At a cutoff of
90% for both the experiments on an average 38% of map features
are being matched with very high confidence and at a precision of
100%. These map feature correspondences being accurate can be
used as anchor points for alignment purposes without any
hesitation.

If we lower the confidence score threshold, the match % still
increase but the precision of match goes down. This happens
because a similar node exists slightly far off from the position of
the actual match for certain nodes which has similar kind of
neighborhood. Also, once we lower the confidence score
threshold, we can get one to many matches, with the closest one
being the one with highest score. Some incorrect matches can be
eliminated by either picking the best candidate based on
confidence score if there are such one-to-many matches, while in
some cases an additional distance-based filter may help. In short
as long as we are okay with the number of highly confident points
for our downstream alignment task, we don’t need to lower the
threshold further.

In ground control point (GCP) based alignment method the
ground control points provided by third party usually comprise of
10% to 15% of the nodes for the entire dataset. With this method
we can have more than 38% of highly confident control points,
which can be used to align the datasets.

Figure 9.a. Map feature correspondences (cyan) between Car
sensor data C1 (red) and Car sensor data C2 (green)
augmented with 10m offset and 25% nodes removed.

Cut
off

Source
#1

Source
#2

%
match

%
correct

>75% C1 C2 ~64 % 98 %
 HERE C2 ~57 % 99 %

 C1 HERE ~53 % 99 %

>90% C2 C1 ~42 % 100 %
 HERE C2 ~39 % 100 %
 C1 HERE ~40 % 100 %
>90% C1 C2 with

Offset 10m
~55 % 100 %

>90% C1 C2 offset+
10% nodes deleted

~32 % 100 %

>90% C1 C2 offset+ 20%
nodes deleted

~24 % 100 %

GeoKG ’22, November 1, 2022, Seattle, WA, USA A. Soni, et al.

In the results of experiment done with augmented dataset of C2
with C1 which has >10 meter of offset. Even after dropping a few
nodes randomly, it still is able to report confident matches at 90%
threshold. However, the % of confident matches reduces as we
keep on removing the nodes further. For reference, Figure 9.a.
shows the obtained map feature correspondences in a section of a
tile which was part of our hold-out dataset.

10 Conclusion and future scope of work
In this paper, we presented a method to construct a heterogeneous
geospatial graph comprising of multiple different map feature
types including linear and point map features by processing them
in a certain manner so that they can be used to do various types
of geospatial graph mining operations.

Further, we have demonstrated how these generated geospatial
graphs can be leveraged to learn the neighbor aggregated vector
embeddings so that they can be used to solve automated map
feature alignment problem, by finding map feature
correspondences in a similar dataset obtained from a different
source.

Using graph mining algorithms one can learn the usual patterns
of certain map feature types, like with whom they are mostly
associated with or even learn a representation of a map feature to
categorize outliers by discarding them if their embeddings are
very different from usual embeddings of that map feature. For
example., if we cluster all learned representations of traffic signals
it should give us a cluster centroid of how a usual traffic signal is
represented, and even help us filter out false positive traffic
signals that were reported at wrong places than the usual traffic
signals with a certain set of features in its surroundings. Our
future work is planned to explore this path to remove false
positives by doing anomaly detections in automated map making
domain.

Another area to explore could be prediction of missing or
undetected attributes or features. For example., a lot of time signs
are detected but they are not categorized into subtypes whether
it’s a speed limit sign, or a no-turn sign etc. Such missing
classifications can be predicted if we create such a geospatial
graph from ground truth data and use it with graph neural
networks that can predict missing nodes or nodes with missing
attributes.

With respect to current work discussed in this paper, we can also
improve it further by supporting 3D geometries. Polyline
Autoencoder can be changed to encode 3D polylines and position
vectors can be modified to store the elevation value while training
the GraphSAGE model.

ACKNOWLEDGMENTS
This work would not have been possible without support and
funding provided by the managers and leaders at HERE Global

B.V. Also, the data providers and engineering teams who provided
the real-world data for us to work and experiment on. Also, we
would like to acknowledge the contribution of Data Science
faculty members associated with Birla Institute of Technology and
Sciences, Pilani, who did review this work and provided their
valuable feedback.

REFERENCES
[1] Hamilton, W. L. (2017). Inductive representation learning on large graphs.

Proceedings of the 31st International Conference on Neural Information
Processing Systems, (pp. 1025-1035).

[2] Liu, Z. & . (2020). Introduction to graph neural networks. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 1-127.

[3] Zhou, J. C. (2020). Graph neural networks: A review of methods and
applications. AI Open,57-81.

[4] Gabay, Y. &. (1994). Automatic adjustment of line maps. In proceedings of
GIS/LIS, 94, pp. 332-340.

[5] Zhang, M. &. (2010). A road-network matching approach guided by 'structure'.
Annals of GIS,165-176.

[6] Chen, C.-c. (2005). Automatically and accurately conflating road vector data,
street maps and orthoimagery. PhD. Thesis, University of Southern California,
Los Angeles, CA, USA.

[7] Yang, B. &. (2012). A probabilistic relaxation approach for matching road
networks. International Journal of Geographical Information Science, 1-20.

[8] D. Yao, C. Z. (2017). Trajectory clustering via deep representation learning.
International Joint Conference on Neural Networks (pp. 3880-3887). IJCNN.

[9] Bronstein, M. M. (2017). Geometric Deep Learning: Going beyond Euclidean
data. IEEE Signal Processing Magazine, pp. 18–42.

[10] Yue, Y. &. (2020). Point Registration Approach for Map Fusion. In Y. &. Yue,
Collaborative Perception, Localization and Mapping for Autonomous Systems
(pp. 29-45). Springer.

[11] Deretsky, Z. &. (1993). Automatic conflation of digital maps. Proceedings of
VNIS '93 -Vehicle Navigation and Information Systems Conference. IEEE.

[12] Hochreiter, S. &. (1997). Long short-term memory. Neural Computation, pp.
1735–1780.

[13] Dongcai, H. (2013). A Study on Theory and Method of Spatial Vector Data
Conflation. Research Journal of Applied Sciences, Engineering and Technology,
563-567.

[14] Goyal, P. &. (2017). Graph Embedding Techniques, Applications, and
Performance: A Survey. Knowledge-Based Systems.

[15] Grover, A. &. (2016). node2vec: Scalable Feature Learning for Networks. KDD:
proceedings. International Conference on Knowledge Discovery & Data
Mining.

[16] Kipf, T. & W. (2017). Semi-Supervised Classification with Graph Convolutional
Networks.International Conference on Learning Representations.

[17] Heimann, Mark & Shen, Haoming & Safavi, Tara & Koutra, Danai. (2018).
REGAL: Representation Learning-based Graph Alignment. 117-126.
10.1145/3269206.3271788.

[18] Faerman, E., Voggenreiter, O., Borutta, F., Emrich, T., Berrendorf, M., & Schubert,
M. (2019). Graph Alignment Networks with Node Matching Scores.

[19] E. Safra, Y. Kanza, Y. Sagiv & Y. Doytsher (2013) Ad hoc matching of vectorial
road networks, International Journal of Geographical Information Science, 27:1,
114-153, DOI: 10.1080/13658816.2012.667104

[20] Filin, S., & Doytsher, Y. (2000). A Linear Conflation Approach for the Integration
of Photogram-metric Information and GIS Data.

[21] Yair Gabay and Yerahmiel Doytsher. AN APPROACH TO MATCHING LINES
IN PARTLY SIMILAR ENGINEERING MAPS. GEOMATICA. 54(3): 297-310.
https://doi.org/10.5623/geomat-2000-0042

