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ABSTRACT 
In an automated map making process, map features like lane-
markings, traffic-signs, poles, stop-lines and similar other features 
are extracted using deep learning methods from various sources 
of imagery or sensor data. These sources come with their own 
positional errors due to which the map features extracted from 
these sources are always misaligned with respect to each other, 
making the conflation of map features a difficult task. We propose 
a novel method to find map feature correspondences between 2 
sets of map feature datasets obtained from different sources by 
first converting them into a heterogeneous geospatial graph and 
then doing node representation learning using a graph neural 
network that can generate vector embeddings that encode 
information of morphology, attributes, and absolute and relative 
positions of the map feature with respect to its neighbours along 
with aggregated information from its neighbours. This process 
can be employed to generate embeddings of map feature nodes, 
which are amicable to identifying spatially similar and 
corresponding map feature nodes across disparate sources with 
varying degree of similarity scores. When applied aptly, these 
map feature correspondences between two sources can be used as 
anchor points to perform spatial alignment with linear or non-
linear transforms, leading to a better conflation. 
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1 Introduction 
Over the years map making companies have evolved to automate 
the process of map making which was erstwhile manual and a 
tedious job. A modern-day HD map usually contains accurate 
information of geometric map features including, but not limited 
to, road geometries, lane geometries, traffic signs, stop-lines, 
crosswalks, road surface markings etc. As part of automated map 
making process, such features are extracted automatically using 
deep learning algorithms from various sources of imagery and 
sensor data. These sources are usually street imagery, car sensor 
data or high-resolution aerial or satellite imagery, terrestrial or 
aerial LiDAR data etc. The data extracted from such sources come 
with their own positional errors that are caused mainly due to 
quality and configuration of sensors and the methods used to 
record and post process the captured inputs. Due to this, the 
features observed/extracted from these sources are usually 
misaligned with respect to each other. Also, the data obtained 
using deep learning algorithms when applied on a single source is 
a lot of times incomplete due to the nature of the source itself. For 
example., Aerial imagery may have occlusions like tree cover 
preventing the complete detection of lane markings or road 
boundaries. Similarly, in street imagery captured by a car with a 
camera mounted on the top or a dashcam can have temporary 
occlusions like a big vehicle in the side or front that may prevent 
the view of road surface or a traffic sign. Hence, map making 
companies usually rely on data obtained from multiple sources to 
build maps. 
 
In a manual or semi-automated map making process a human 
operator creates or reviews map data from multiple sources, and 
then creates a final version of map data by fusing data from 
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multiple data sources manually. While, if the data is assumed to 
be well aligned, an automated conflation process becomes an 
easier task which can be achieved by clustering of map features 
and by filling gaps in data from one source, based on the inputs 
from another source and calculating the resultant attributes based 
on consensus. However, this important step of multi-source 
fusion in an automated map making process, becomes a 
challenging task as features from these sources are misaligned 
spatially and may not be amicable for spatial clustering 
techniques. Thus, one must align data from 2 misaligned 
geospatial datasets so that they get closer to each other, and then 
execute the semantic conflation process to derive final geometry 
or attributes of the fused map features.  
 
A common way of doing alignment is by using manually surveyed 
ground control points as anchor points. These anchor points are 
used to estimate transforms between the dataset and ground 
control points. For example, if a dataset A is to be aligned with 
dataset B, with an input set of ground control points G. A 
transform is estimated between corresponding point features in 
dataset A with G and then A is transformed using the estimated 
transform. Similarly, a transform is estimated between 
corresponding point features in B and G and then B is transformed 
using the estimated transform. Thus, A and B both get aligned 
independently to G, and as a result A and B gets aligned with 
respect to each other. The ground control points are usually 
supplied by third party vendors who perform manual physical 
surveys of some key map features like traffic signal, pole, or traffic 
sign etc. Collecting ground control points in every area of interest 
is an expensive process and hence not scalable for those regions 
where survey capabilities are not available.  
 
An alternate approach to do alignment is to estimate feature 
correspondences between dataset A and dataset B directly and use 
the matching features as anchor points or control points to 
estimate a transform of one dataset with respect to the another. 
Using the estimated transform one of the datasets is transformed 
so that it aligns to another dataset. The transforms estimated in 
both the approaches can be linear or non-linear depending on the 
nature of the data. The focus of this paper is on this approach of 
the alignment as it involves identifying inter-source map feature 
correspondences in form of anchor points which are precursors to 
estimate transforms of one dataset with respect to another. The 
key contributions of this paper are summarized as given below. 

• To the best of our knowledge, we present the first method to 
construct a heterogeneous geospatial graph from a 
heterogeneous geospatial dataset that can have incomplete 
or noisy features and it also accounts for linear features in 
graph by processing them in a certain manner. This graph 
can be used to perform many other types of geospatial graph 
mining operations apart from the use case that is covered in 
this paper. 

• Once the graph is constructed, we generate neighbor 
aggregated vector embeddings using a prominent inductive 
Graph Neural Network algorithm, GraphSAGE [1] that gives 

us vector embeddings corresponding to every map feature 
node in the graph that encodes the information about the 
morphology, attributes, relative and absolute position of 
itself with respect to its neighbors and aggregated with 
similar information passed from its neighbors and neighbor’s 
neighbors.  

• In this way we try to identify similar situations in 2 
geospatial datasets by calculating the distance between their 
neighbor aggregated node (map feature) vector embeddings 
using a similarity metric like Manhattan Distance weighted 
by a proximity factor.  

• We also publish our results of map feature correspondences 
on real dataset of map features extracted from different car 
sensor data, street imagery data and aerial data. 

 
The intuition behind this algorithm can be explained with an 
example below. Let’s assume that there is a no-right-turn traffic 
sign situated at a junction in a dataset A. In its neighborhood there 
is a traffic signal, a striped crosswalk, a stop-line, a road boundary 
and a solid yellow lane boundary that are existing at a certain 
distance, angle, and position. We create a geospatial graph of this 
dataset and generate neighbor aggregated embeddings of this 
traffic sign. The embeddings are generated in such a way that it 
includes information about the type and attributes of the no-right-
turn sign itself, aggregated with type and attributes of other 
features in neighborhood, along with the distance between them, 
their absolute positions and angle with respect to a reference axis. 
If a similar scenario exists for a no-right-turn sign in dataset B 
their embeddings would be similar. Thus, yielding a match. If we 
get a significant amount of such confident matches these matches 
can be used as anchor points to estimate transforms to transform 
dataset A to B or from B to A. The heterogeneous geospatial 
datasets used for the work done related to this paper involves map 
feature types mentioned in Table 1.1 along with their geometric 
representations.  

Table 1.1 Map Feature Types & geometric representations 

Map Feature 
Type 

Geometric 
Representation 

Subtypes / 
Attributes 

Lane Markings Polyline Yellow, white, solid, 
dashed 

Road Boundary Polyline - 
Traffic Sign Point Speed limit, 

restricted driving, 
silent zone, hazard 
etc. 

Road Barrier Polyline Guardrail, Jersey 
Barrier etc. 

Pole Point - 
StopLine Polyline - 
Crosswalk Polyline Striped, Solid 
Road Surface 
Marking 

Point Direction Arrows, 
bicycle/bus lane etc.  

Traffic Signal Point - 
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More map feature types can also be added if the data of the same 
is available from sources for which we want to find the map 
feature correspondences. 
 
The rest of this paper is organized as follows. In section 2, we 
report the important related work and existing approaches used 
to solve similar problems. In section 3, we discuss a common step 
of scaling and normalization of data applicable to both linear and 
point features. In section 4 we describe the data preparation step 
to be performed for linear map features. Section 5 describes the 
data preparation step for point features. In section 6 we describe 
the algorithm to prepare the geospatial graph. In section 7 we 
describe the method to generate the node representations i.e., 
neighbor aggregated vector embeddings corresponding to each 
map feature in the geospatial datasets. Section 8 describes the 
similarity metric used to calculate distance between vector 
embeddings of map features in 2 geospatial datasets to identify a 
match. Section 9 describes the experimental setup used for using 
this method on real world datasets and the results obtained on the 
same. Section 10 describes the conclusion and future scope of this 
work which is followed by acknowledgements and references. 

2 Review of existing work 
A lot of research work has been done to conflate map data from 2 
sources. To the best of our knowledge all existing work deal with 
conflation of geospatial datasets where map features are conflated 
in isolation without confirming their presence in conjunction 
with their neighbors. Validation of presence of map feature in 
conjunction with respect to its neighbors becomes important if 
the datasets have false-positives, which is usually the case when 
data is obtained through an automated map data extraction 
process. Such false positives should not be accounted for, while 
estimating the transforms between 2 datasets. With the evolution 
of deep learning algorithms, advances in automated map data 
extraction have only been possible recently. Hence, even though 
this topic has been worked upon over several years, this work 
becomes different from the other work as aligning geospatial 
datasets by converting them into a heterogeneous geospatial 
graph has not been done earlier. Since there are huge number of 
papers which are related to topic of conflation of geospatial 
datasets, it is not possible to discuss all of them in this section. 
Hence, those relevant to this work have been explained which 
includes papers related to conflation and alignment algorithms, 
graph related algorithms, deep learning algorithms and 
autoencoders which forms the basis of the work done as part of 
this paper. 
 
(Gabay, 1994) [4] introduced a method to match the 
corresponding polylines between two different maps defined in 
different locations and topological characteristics. This was used 
for combining maps from several sources into a uniform database 
without geometrical and/or topological contradictions. Based on 
the identified set of matching entities from the different maps, 
they presented an automatic approach to correct and adjust the 
polylines from one map in order to make their locations more 

accurate, relative to another map. (Filin and Doytsher 1999) [20] 
proposed a method of matching road junctions using a point 
matching algorithm. Then the topology of polylines connected to 
the points were used to propagate matches to the lines. (Gabay 
and Doytsher 2000) [21] proposed a polyline conflation algorithm 
where polylines from one dataset are buffered and if the polyline 
from another source falls completely within the polygon created 
by the buffer the 2 polylines are considered to be matching pairs. 
A lot of work has been done related to aligning road network from 
a map data source to another road network from another map data 
source [5, 7, 18] or aligning road network to a satellite or aerial 
rasters [6],  and also for aligning point clouds using point 
correspondences and ICP [10]. (Deretsky, 1993) [11] used a chain 
of arcs technique modelling the attribute and geometry for every 
feature in form of arcs, so that given 2 maps both maps become 
partitioned by the chains into much smaller pairwise matched 
areas called wards. The conflated map is then produced by starting 
with one of the input maps and attribute information from 
matched chain and wards is transferred to the conflated map 
according to a set of user configurable rules. (Dongcai, 2013) [13] 
defined a framework of vector spatial data conflation in multi-
source vector space and discussed the flow of the conflation of 
attribute data and geometry data. They had identified prominent 
matching methods as geometric matching and semantic matching. 
They also describe a deterministic algorithm which can be used 
for feature matching based on linear feature and point feature 
matching based on their respective topologies. 
 

 (Doytsher 2013) [19] presented an algorithm for ad-hoc 
integration of road vector data, where roads are represented as 
polylines, but their algorithm uses only the endpoints of polylines 
and not the whole polylines.  
 
(Heimann 2018) came up with The REGAL [17] or Representation 
based Graph Alignment Framework which was the first 
framework to formulate unsupervised graph alignment problem 
as a problem of learning and matching node representations that 
generalize to multiple graphs. It was defined as a generic approach 
that can be applied to any type of graphs. (Faerman, 2019) [18] 
used road junction point features to first generate a road junction 
node graph using the road network obtained from OpenStreetMap 
and a proprietary map data provider and uses a graph neural 
network to do node representation learning on it. The road 
junction nodes are then matched based on the similarity score 
calculated by calculating distance between their embeddings. 
 
 (Goyal, 2017) [14] summarized all node, graph and edge 
embedding methods in a survey of papers. (Kipf, 2017) [16] 
Introduced the Graph Convolutional Neural Networks (GCN) and 
(Bronstein, 2017) [9] introduced the idea of geometric deep 
learning on networks of data which laid the foundation of 
learning on data which is in represented in form of graph or 
networks. (Liu, 2020) [2] introduced the idea of graph neural 
networks that can be used to find neighbour aggregated and 
learned representations of graph components like edges and 
vertices by accumulating information from its neighbours. While 
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Node2Vec [15] introduced the idea of generating node vector 
representations for a graph. Node2Vec was not an inductive 
method, which means it does not work on unseen nodes of the 
graph that can be added in the future. GraphSAGE [1] was 
proposed as an inductive learning method for graph node and 
edge representation learning. (Zhou, 2020) [3] presented a review 
of methods in graph neural networks which also details gathering 
data for unsupervised learning on graphs, which was a good 
reference point to start for our problem statement as this involves 
unsupervised graph node representation learning. 
 
(Yao 2017) [8] described a trajectory clustering method which uses 
LSTM [12] to generate latent representations of trajectory 
polylines for clustering similar trajectories. 

3 Data scaling and normalization 
The data extracted from different source may arrive randomly 
based on how it is ingested into the alignment and conflation 
system as an input. Hence, we must decide a unit of work on 
which we need to match data from 2 different geospatial datasets 
that needs to be merged. This unit of work can be a common or a 
proprietary tiling scheme that defines all data falling within that 
tile to be fused or conflated after performing the alignment. For 
our work we used HERE’s tiling scheme, however any prominent 
tiling scheme as a unit of work can be used to replicate work of 
this paper. A tile is just a bounding box for which you have 
obtained geospatial datasets from 2 different sources between 
whom we need to find map feature correspondences. This 
bounding box tile will have a minX, minY, maxX and maxY 
representing the lower left and upper right corners, using which 
all other corners of the tile can be derived. It is easier to work with 
meter-based coordinates hence we first converted all the latitude 
longitude values representing linear and point features which 
were in WGS84 EPSG:4326 to their corresponding UTM zone 
projected coordinates. These UTM projected coordinates were 
then scaled in a fixed range of 0 to 10 using (minX, minY) as (0,0) 
and (maxX, maxY) as (10,10). In theory any other smaller range 
should also yield similar results.  
 
The attributes of each linear and point feature were normalized to 
prepare initial attribute feature vectors. The attribute vector is a 
standard vector with numerically encoded or enumerated values 
of all type of attributes existing across linear and point features.  
For example, a sample attribute vector may look like enumerated 
version of following 
 

 

 
Where, applicable values are populated based on normalized 
enumerated values.  
 
For example, a Sign type may correspond to Speed Limit Sign 
which can have an enumerated value of 1 and a restricted driving 
sign may have an enumerated value of 2 and likewise. If the 
feature is a Sign, the attribute vector will have non applicable 
values set to a default value of 0. For example, lane color is not 
applicable to a Sign type map feature, hence it would be populated 
as 0 which depicts an enumerated value corresponding to “Not 
Applicable”. Features like road boundary, stop line, pole and 
traffic signal did not have any associated attributes or subtype 
categorization in our data hence for them the attribute vectors 
would be filled up with all zeros. However, when we construct the 
geospatial graph the node types are populated based on the 
feature types, so, the type information of these features is 
captured over there. 

4 Data preparation for linear features 
Linear map features like lane markings, road boundary, barrier 
geometries etc. are represented by a polyline. In different 
geospatial datasets that are obtained from different sources, same 
linear features can have different sampling rates of shape points. 
Which means that if a linear feature like a lane boundary is 100 
meters long and is present in datasets A and B the polyline 
representing same lane boundary were represented with unequal 
number of shape points in both the datasets. To deal with this we 
decided to perform following steps to pre-process such linear 
features of each of the datasets. 
 
Point features like Poles can be used to localize where we are on 
an adjacent linear feature. Poles are usually on the sides of road 
and are also on the center divider on a bi-directional road. They 
are usually placed at a regular interval, hence they become a good 
candidate point features to localize where we are on a linear 
feature like a road boundary, road barrier or a lane boundary. 
Signs, could also be used, but Signs may or may not be present on 
every road and also a lot of times multiple signs are posted on the 
same sign post or overhead banner, this could be a problem as 
there are chances that an automated map data extraction system 
might not be able to capture all of them correctly since there are 
multiple different sign types observed at same location in such a 
scenario. Hence, we decided to use Poles only for this work.  We 
buffer each polyline laterally based on a threshold of 3 meters and 
check if there are any poles in that buffer. If poles are found then 
perpendicularly project them onto linear features to break them 
into multiple polylines. Threshold of 3 meters is taken considering 
worst-case scenario of a single lane road, with parallel poles on 
both sides of the road. In such a case the road boundary on each 
side of the road should only get cut by the pole on that side and 
not by the pole on the opposite side to avoid double cuts. If the 
number of lanes is known upfront, this threshold can be 
appropriately configured. 
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Figure 4.a Method of cutting linear features based on 
perpendicular projection of point features in lateral buffer 

In the scenario presented in Figure 4.a, a road has 2 road 
boundaries and one lane boundary depicted by yellow solid lane 
marking. There is also a pole in the 3 meters buffer of one of the 
road boundaries and hence the pole is perpendicularly projected 
onto that road boundary and the polyline representing the road 

boundary will be broken into 2 polylines Start Projected_Pole 

and Projected_Pole End. 
 
Cutting the linear feature in such a way increases the chances of 
finding a greater number of confident matches in the map feature 
matching process. The intuition behind doing this operation is 
that if in the above case if a confident match is found for the pole, 
there would be a confident match found for the linear patches of 
road boundary also that are created after perpendicularly 
projecting the pole onto it. 
 
The second step of this process is to encode the polylines into a 
fixed 128-dimensional vector using a generative autoencoder like 
LSTM [12]. In earlier works LSTM Autoencoders have been used 
to encode linear features like vehicle trajectories [8] and their 
learned latent representations have been used to find similar 
trajectories by clustering them based on their embeddings. We use 
the same concept to encode polylines. Only difference between 
trajectories and polyline features like road boundaries or lane 
boundaries is that trajectories always have an associated direction 
of travel information, and their coordinates are always in order of 
the direction of travel. However, the lane boundary or road 
boundary extracted from certain sources may or may not have 
direction of travel information and their order of coordinates may 
not represent the actual direction of travel for lanes or roads. 
Lanes can go in opposite directions on a bidirectional road and 
when they are detected from aerial imagery or street imagery the 
order of coordinates of their geometry that are derived may not 
represent the actual direction of travel applicable for that lane. So, 
it may be possible that a lane boundary that goes from point A to 
point B is represented in another dataset in the order of point B to 
point A. Since the order of coordinates are reversed their 
embeddings generated by the autoencoder will not be same. LSTM 
encodes sequence of coordinates in their given order, if the order 
of coordinates are different, then their learned embeddings are 
also different . So, to deal with this issue we first modify the order 
of the coordinates of polylines so that they stay uniform in both 
the data sets.  

 
To achieve this, we first iterate over every polyline and compare 
their start point S of the coordinate sequence with the end point 
E of the coordinate sequence. We first compare whether latitude 
of S < latitude of E if yes then we keep the order of coordinate 
sequence from S to E, else we reverse the coordinate sequence so 
that it becomes a polyline starting from E and ending at S. In case 
where the latitudes of S and E are equal, we compare the longitude 
by checking if longitude of S<longitude of E, if yes, then we keep 

the order of coordinate sequence from S E, else we change it by 

reversing it so that it becomes E S. This reordering is only 
needed if the order of coordinates in both datasets to be fused are 
not uniform. Once the reordering is done, we encode the 
reordered polylines using a polyline autoencoder which is a 
generative LSTM autoencoder described in the section 4.1 

4.1 Polyline Autoencoder 
Given that same polyline features may have different sampling 
rates, a generative LSTM autoencoder is capable of learning the 
latent representation of geometric shape and structure i.e., 
morphology and position represented by a sequence of 
coordinates irrespective of its sampling rate. For example, 
consider that dataset A, B and C are having the same lane 
boundary polyline extracted from 3 different sources respectively. 
They will have different sampling rates; however, the learned 
latent representation should be same for all 3 of them irrespective 
of sampling rate. Which means that autoencoders will learn the 
signal in the data represented by sequence of coordinates 
representing a polyline by discarding the noise added by different 
sampling rates. 
 
To achieve this goal, we used a generative LSTM autoencoder that 
was trained to reproduce a given input polyline itself. Once it 
learns to generate itself, the latent space will hold the information 
on how to compress a given polyline into a fixed dimensional 
vector irrespective of its length, shape, structure, and number of 
shape points. The method used to train the polyline encoder is 
explained below. 
 
20000 polylines initially were selected to train this model. These 
polylines were resampled at 1 point per meter rate. Additional 
multiple sets of this original set were created by resampling at 
rates of 10 meters, 15 meters, 20 meters and 25 meters. Hence total 
20000x5 sets = 100000 were used as training data input. The labels 
used for training were 20000 x 5 sets of lines resampled at a fixed 
sampling rate of 10 meters. Augmentation was done to add 
random noise in this original input by deviating the longitude and 
latitude values by a random offset range within 1 meter and thus 
final labels of 100000 polylines were obtained. This augmentation 
was done to ensure that a polyline which are similar or even if it 
has a certain offset then the autoencoder produces an embedding 
vector which is closer to the representation of original polyline. 
We left padded the inputs with 0 as the length of different 
coordinates sequences representing different polylines will not be 
same. Same kind of padding was also done for labels. Since the 
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maximum count of coordinates in the largest linear feature after 
equidistant resampling was 2560, we decided to left pad all other 
features smaller than that to match that length. Hence the shape 
of training data was (n, 2560, 2) where n is the sample count and 
2650 is length of coordinates for each sample and 2 is the number 
of values in each coordinate tuple i.e., x and y (which is nothing 
but the scaled longitude and latitude after they were converted to 
UTM projection) 
 
We used a contrastive loss function instead of MSE (Mean squared 
Error) as used in the original paper by (D. Yao, 2017) [8]. Since 
contrastive loss is more suitable while you want to map vectors 
that model the similarity of input items. Which is what was 
required in our case. Contrastive loss is mathematically described 
as follows. 
 

 

Here, 

• Y is the value of our label, 
• D is the Euclidean distance between input and label 

embeddings 
• max is the function that gives maximum between (margin - 

D) and 0 
• The margin defines a radius around the embedding space of 

a sample so that dissimilar pairs of samples only contribute 
to the contrastive loss function if the distance D is within the 
margin 

The model used is a combination of 2 LSTM networks, an LSTM 
encoder network, and an LSTM decoder network. The model uses 
a masking layer to ignore the values of mask while calculating the 
loss. To propagate the mask across all layers, a custom LSTM 
bottleneck layer was implemented that copies over the mask 
across the RepeatVector layer and propagates it to the decoder. 
The model uses a left padded 2560 length sequence of coordinates 
as input and encodes it to 128-dimensional vector in the 
bottleneck layer and decodes back a 2560 length coordinate 
sequence representing the same polyline that was provided as 
input. Refer the model architecture diagram in Figure 4.b. 
 
 

 
 

Figure 4.b Polyline Autoencoder Model Architecture 

Once the model is trained, we only need the encoder part of the 
model to encode the polylines into 128-dimensional vector and 

Repeatvector and Decoder parts were pruned from the network to 
make the inference faster. The encoder model was then used for 
creating 128-dimensional vector embeddings for all linear features 
of the geospatial datasets for which we were to find map feature 
correspondences. We also prepare a scaled position vector 
depicting the scaled position (x, y) of the starting point of the 
linear feature obtained after the preprocessing and reordering as 
described in section 4. To incorporate the angle aspect in the 
feature vectors, we use the angle formed between line segment 

(minX, minY)  (minX, maxY) of the tile, to line segment (minX, 

minY)  (x, y) and append it position vector like 
 

 

 
which in turn is appended to the attribute vector and result of 
which is again appended with 128-dimensional embedding vector 
as obtained above. The resultant feature vector looks like,  
 

 

 
To summarize with an example, let’s assume we have 2 geospatial 
datasets obtained for same tile. We first normalize and scale the 
coordinates, prepare their attribute vectors for both point and line 
features, preprocess the linear features by cutting them based on 
point features existing in the vicinity and obtain the 128-
dimensional embeddings for its resultant linear features. A 
position vector is prepared for each of these linear features which 
has scaled x and y values and angle with respect to a reference 
axis, which is then appended to the attribute vectors of linear 
features and a result of which is then appended to the 128-
dimensional embeddings of the linear feature to obtain final 
feature vector for linear features. Thus, the final vector produced 
for each linear feature has information related to its 
morphological features, attributes and position. 

5  Data preparation for point features 
Point features don’t have shape and structure like linear features. 
Hence, they can be defined just by their position vector appended 
to its attribute vector. However, to perform neighborhood data 
aggregation we must keep feature vectors of linear and point 
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features to be of same dimension. Hence, we used a 128-
dimensional zero vector for point features appended by their 
attribute vector and position vector as a final feature vector for 
point features as shown below. 
 

 

 
Once the final feature vectors of linear features and point features 
are obtained using the method described in section 4 and section 
5, they are used to produce neighbor aggregated feature 
embeddings using a graph neural network. But to do that we need 
to first construct the graph which is described in the section 6 
below. 

6 Geospatial Graph 
Algorithm-1 describes the method that is used to build the 
geospatial graph. The algorithm accepts a geospatial dataset 
which is a collection of map features for a given tile where feature 
vectors are prepared as described in section 3, 4, 5 and outputs a 
geospatial Graph G. The steps of the algorithm are described 
below. 

1. A KD-Tree based spatial index is constructed so that we can 
easily query what features are in neighborhood of a given 
feature in certain radius threshold of T meters.  

2. An empty graph is initialized. 
3. T is defined as 20 meters here so that only features within 

that threshold get connected to each other through an edge 
since they are considered neighbors. 

4. Iterate over each map feature fi in the input dataset 
5. Find who is in the neighborhood within radius T for each 

feature fi and store it in Ni 
6. Check whether G has node fi added already in the graph 
7. If node is not in G, add it. We also populate the node type 

with the type of map feature we are adding as a node along 
with its attributes. 

8. Define an empty dataframe that can hold neighboring nodes, 
its type, and its weights and distance from fi. 

9. Iterate over all neighbors nj present in Ni, which are 
neighbors of fi. 

10. Check if these neighbor nodes are present in the graph or not  
11. If node is not present in the graph, we add it along with its 

type and attributes 

Algorithm 1: Algorithm to construct geospatial graph 

 Input: A geospatial dataset that is collection of map features F 
with their respective feature vectors V  

 Output: A graph G with map features as nodes along with node 
attribute vectors and edges created between them 

1 Construct a KD-Tree based spatial index S using map features F 

2 Initialize: an empty Graph G 

3 Initialize: distance radius in meters threshold T = 20    

4 for fi in F:      // iterate each feature in collection of map features 

5  Ni = S.query_radius(fi, T) //where, Ni are neighbors of fi in T 

6  if not G.has_node(fi):  

7   G.add_node (fi, type = fi.type, attributes = fi.vi) 

8  Initialize: dataframe dfij of node and its type, weight, 
distance 

9  for nj in Ni:      //iterate each neighbor of fi 

10   if not G.has_node(nj):  

11    G.add_node (nj, type = nj.type, attributes = nj.vj) 

12   if both fi and nj are Point features 

13    
d = // Euclidean dist 

14   else if one of fi or nj is a Polyline and one is Point 
feature: 

15    pp = perpendicular_project_point_on_line (fi, nj) 
//perpendicular projection of point feature on 
polyline  

16    
d =   

17   else if both are polyline features: 
18    d = hausdorff_distance(fi, nj) 
19   wij =      // calculate weight 

20   dfij.append(nj, nj.type, wij, d) 

  end 
21  dfij = dfij.sort_by(wij, descending=True)  //sort all 

neighboring nodes by weight 

22  dfij = dfij.unique(nj.type, keep_first = True) // retain first 
unique                                                                               .    
//nodes by node type 

23  for unique_nearest_neighbour, w in zip (dfij.nij, dfij.wij) 

24   G.add_edge (fi, unique_nearest_neighbour, weight = w) 

  end 
 end 

25 return G 
  

 
12. Check If the feature fi and its neighbor nj are both point 

features 
13. If both fi and nj are point features, then calculate the 

Euclidean distance between both. 
14. Check if either feature fi or its neighbor nj is a Point feature 

and other one is a Line Feature. 
15. If yes, then project the point feature on the line feature  
16. Find perpendicular distance from Point to its projection. 
17. Check if both are linear features  
18. If yes, then calculate Hausdorff Distance between both. 
19. Calculate weight value that is inversely proportional to D 
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20. Populate the dataframe with the calculated information for 
each node and its neighbors. 

21. Sort the dataframe by its weight in descending order 
22. Filter unique features based on feature type 
23. Iterate over each unique node and column 
24. Add edge between them. Repeat for all remaining features of 

input dataset. 
25. Return the generated graph for the input dataset.  
 
Since, we have 2 datasets to deal with for finding map feature 
correspondences amongst them, we repeat the same process for 
second dataset and thus prepare graph for each dataset. 

7 Generating node representations 
Once a graph is prepared, we need to learn the neighbour 
aggregated embeddings based on the neighbourhood information 
present in the graph. So that the neighbourhood learned 
embeddings will help us find matching nodes in both geospatial 
graph datasets. 
 
The idea behind this can be well explained with an example of a 
Traffic Signal, which is in the neighbourhood of a crosswalk, a 
stop-line and a speed limit sign at a particular location in Graph 
‘A’. The same traffic signal is also present with similar 
neighbouring features in Graph ‘B’, the embeddings generated for 
Traffic Signal would be aggregated embeddings of itself and its 
neighbours, which will encompass information of shape, 
structure, attributes and position of itself and its neighbours. The 
distance between neighbourhood aggregated vector embeddings 
for the traffic signal in both the graph is an indicator of how 
confidently we can say that this Traffic Signal in Graph A is same 
as the Traffic Signal in Graph B. This is the reason why we need 
to learn neighbourhood aware embeddings. 
 
This can be done by aggregating the embeddings of neighbours 
using an aggregation function. However, the concern is that this 
approach needs to be inductive. (Goyal, 2017) [14] presented a 
survey of prominent graph and node embedding generation 
techniques which include Matrix Factorization, Laplacian 
Eigenmaps, Random walk, Spectral decomposition along with 
other methods including the one proposed by (Grover, 2016) [15] 
which is Node2Vec. However, these methods are transductive 
which means they don’t work well on unseen data or nodes which 
can be added into the graph in future. Using and inductive method 
will help speed up inference times on data belonging to other tiles 
which model is not trained on. (Hamilton, 2017) [1] presented 
GraphSAGE (Graph SAmple and AggreGatE) which can learn an 
inductive representation of nodes in a graph. GraphSAGE learns 
representation of every node by aggregating the representations 
of neighbours. As of today, there are many out of the box 
implementations of GraphSAGE available in prominent graph 
learning software packages. We used an existing GraphSAGE 
implementation as is for generating the embeddings for our graph 
nodes. 
 

GraphSAGE can be trained in both supervised and unsupervised 
fashion. In our case we used an Unsupervised GraphSAGE which 
can learn embeddings of the nodes using only the graph structure 
and the node features, without using any known node class labels. 
We used a technique to generate the training data of GraphSAGE 
in an unsupervised manner. With this method the training 
samples are generated by performing uniform random walks over 
the graph where Positive (target, context) node pairs are extracted 
from the walks, and for each positive pair a corresponding 
negative pair (target, node) is generated by randomly sampling 
nodes from the degree distribution of the graph. It finally yields a 
positive and negative node pairs along with their respective 1/0 
labels. Using this method, we generated equal number of positive 
and negative node pair samples from the graph for training. We 
used 3 random walks per node with a walk length of 7 to generate 
such positive, negative training data pairs. 
 
We trained a GraphSAGE link predictor model using data of 10 
level 14 HERE Tiles which were a mixture of map features 
obtained from 2 different sources including car sensor data from 
2 separate car sensor data providers and aerial data. As a by-
product of which it learns to generate the neighbour aggregated 
node embeddings inductively. The accuracy of link prediction 
obtained on a hold-out dataset was consistently greater than 70% 
in all our experiments, which implies that it can learn the node 
representations correctly.  
Once the neighbour aggregated embeddings are obtained by 
running inference on the trained GraphSAGE model on graphs 
obtained from 2 separate geospatial datasets, the similarity 
between the nodes can be calculated by calculating distance 
between their embeddings. 

8 Calculating node similarity 
A proximity weighted Manhattan distance is used to calculate 
distance between node embeddings generated as part of process 
described in section 7. Manhattan distance is generally a good 
metric to use when dimensions of vectors are larger and is defined 
by the formula: 
 

 
 
Here, X, Y, …. N are the dimensions of the vectors 
 
We also define a proximity weight coefficient ( ) as  
 

 

 
Where, d is the distance value calculated in step 13,16 or 18 of 
Algorithm-1. Using both the above formulas, we define a node 
match confidence score function as 
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9 Experimental setup and results 
We conducted 2 separate experiments to test our hypothesis of 
finding map feature correspondence in heterogeneous geospatial 
graphs using node representation learning. 
 
In our first setup we used data obtained from 3 different sources 
from a set of 50 level-14 HERE tiles around an urban region from 
Western Europe with approximately 4km2 of area per tile which 
totals to 200km2 of total area. The sources of data were, two 
different car manufacturers using 2 different type of camera, GPS 
and IMU sensors and the 3rd source was map features extracted 
from HERE’s own street imagery dataset. For the confidentiality 
purposes, let’s refer the two car manufacturers providing car 
sensor data as C1 and C2. So, C1, C2 and HERE all 3 sources had 
data available for those 50 tiles with all the feature types described 
in Table 1.1. This data was used as a hold-out dataset that was 
separate from the data used for training the GraphSAGE and 
polyline Autoencoder models which was as described in their 
respective sections. On analyzing the datasets from these three 
sources, we found that an average misalignment between any 2 
pairs of sources is not more than 4 meters. Hence, we also decided 
to create a second experimental setup where used dataset of C1 
and C2 and augmented one of C2 dataset by adding fixed offset of 
10 meters to its original positions and we also dropped certain 
percentage of map features, and we ran our tests on both the 
original and the augmented dataset as we kept on dropping nodes 
from the augmented graph. For both the setups, we generated the 
neighbor aggregated embeddings using our method for all the 
datasets after converting them into geospatial graphs using the 
algorithm we have proposed. Then we measured the percentage 
of highly confident map features obtained between pairs of these 
datasets by putting a cut-off value on the match confidence score. 
We measured how many map features are matched correctly at 
different threshold values of confidence score by manually 
analyzing the same. Table 9.1. shows the percentage of matching 
features with high confidence in given source pairs.  
 

Table 9.1. Percentage of matching features with different 
confidence score cut-offs and source dataset pairs 

The “% match” column indicate % of how many total nodes 
matched in graph of source#1 to nodes in graph of source#2. The 
column “% correct” is the % of correct matches out of the total 
found matches at that confidence cut-off score. 
 
At the confidence score cut-off of 75% the percentage of overall 
matches is more than 50%, across the combination of various data 
sources. At this threshold all matches are highly confident 
matches with very minimal ~2% incorrect matches. At a cutoff of 
90% for both the experiments on an average 38% of map features 
are being matched with very high confidence and at a precision of 
100%. These map feature correspondences being accurate can be 
used as anchor points for alignment purposes without any 
hesitation.  
 
If we lower the confidence score threshold, the match % still 
increase but the precision of match goes down. This happens 
because a similar node exists slightly far off from the position of 
the actual match for certain nodes which has similar kind of 
neighborhood. Also, once we lower the confidence score 
threshold, we can get one to many matches, with the closest one 
being the one with highest score. Some incorrect matches can be 
eliminated by either picking the best candidate based on 
confidence score if there are such one-to-many matches, while in 
some cases an additional distance-based filter may help. In short 
as long as we are okay with the number of highly confident points 
for our downstream alignment task, we don’t need to lower the 
threshold further. 
 
In ground control point (GCP) based alignment method the 
ground control points provided by third party usually comprise of 
10% to 15% of the nodes for the entire dataset. With this method 
we can have more than 38% of highly confident control points, 
which can be used to align the datasets.  
 

 

Figure 9.a. Map feature correspondences (cyan) between Car 
sensor data C1 (red) and Car sensor data C2 (green)  
augmented with 10m offset and 25% nodes removed. 

Cut 
off 

Source 
#1 

Source 
#2 

% 
match 

% 
correct 

>75% C1  C2 ~64 % 98 % 
 HERE  C2 ~57 % 99 % 

 C1 HERE  ~53 % 99 % 

>90% C2 C1 ~42 % 100 % 
 HERE  C2 ~39 % 100 % 
 C1 HERE  ~40 % 100 % 
>90% C1 C2 with 

Offset 10m 
~55 % 100 % 

>90% C1 C2 offset+ 
10% nodes deleted 

~32 % 100 % 

>90% C1 C2 offset+ 20% 
nodes deleted 

~24 % 100 % 
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In the results of experiment done with augmented dataset of C2 
with C1 which has >10 meter of offset. Even after dropping a few 
nodes randomly, it still is able to report confident matches at 90% 
threshold.  However, the % of confident matches reduces as we 
keep on removing the nodes further. For reference, Figure 9.a. 
shows the obtained map feature correspondences in a section of a 
tile which was part of our hold-out dataset. 

10 Conclusion and future scope of work 
In this paper, we presented a method to construct a heterogeneous 
geospatial graph comprising of multiple different map feature 
types including linear and point map features by processing them 
in a certain manner so that they can be used to do various types 
of geospatial graph mining operations.  
 
Further, we have demonstrated how these generated geospatial 
graphs can be leveraged to learn the neighbor aggregated vector 
embeddings so that they can be used to solve automated map 
feature alignment problem, by finding map feature 
correspondences in a similar dataset obtained from a different 
source.  
 
Using graph mining algorithms one can learn the usual patterns 
of certain map feature types, like with whom they are mostly 
associated with or even learn a representation of a map feature to 
categorize outliers by discarding them if their embeddings are 
very different from usual embeddings of that map feature. For 
example., if we cluster all learned representations of traffic signals 
it should give us a cluster centroid of how a usual traffic signal is 
represented, and even help us filter out false positive traffic 
signals that were reported at wrong places than the usual traffic 
signals with a certain set of features in its surroundings. Our 
future work is planned to explore this path to remove false 
positives by doing anomaly detections in automated map making 
domain. 
 
Another area to explore could be prediction of missing or 
undetected attributes or features. For example., a lot of time signs 
are detected but they are not categorized into subtypes whether 
it’s a speed limit sign, or a no-turn sign etc. Such missing 
classifications can be predicted if we create such a geospatial 
graph from ground truth data and use it with graph neural 
networks that can predict missing nodes or nodes with missing 
attributes. 
 
With respect to current work discussed in this paper, we can also 
improve it further by supporting 3D geometries. Polyline 
Autoencoder can be changed to encode 3D polylines and position 
vectors can be modified to store the elevation value while training 
the GraphSAGE model. 

ACKNOWLEDGMENTS 
This work would not have been possible without support and 
funding provided by the managers and leaders at HERE Global 

B.V. Also, the data providers and engineering teams who provided 
the real-world data for us to work and experiment on. Also, we 
would like to acknowledge the contribution of Data Science 
faculty members associated with Birla Institute of Technology and 
Sciences, Pilani, who did review this work and provided their 
valuable feedback. 

REFERENCES 
[1] Hamilton, W. L. (2017). Inductive representation learning on large graphs. 

Proceedings of the 31st International Conference on Neural Information 
Processing Systems, (pp. 1025-1035). 

[2] Liu, Z. & . (2020). Introduction to graph neural networks. Synthesis Lectures on 
Artificial Intelligence and Machine Learning, 1-127. 

[3] Zhou, J. C. (2020). Graph neural networks: A review of methods and 
applications. AI Open,57-81. 

[4] Gabay, Y. &. (1994). Automatic adjustment of line maps. In proceedings of 
GIS/LIS, 94, pp. 332-340. 

[5] Zhang, M. &. (2010). A road-network matching approach guided by 'structure'. 
Annals of GIS,165-176. 

[6] Chen, C.-c. (2005). Automatically and accurately conflating road vector data, 
street maps and orthoimagery. PhD. Thesis, University of Southern California, 
Los Angeles, CA, USA. 

[7] Yang, B. &. (2012). A probabilistic relaxation approach for matching road 
networks. International Journal of Geographical Information Science, 1-20. 

[8] D. Yao, C. Z. (2017). Trajectory clustering via deep representation learning. 
International Joint Conference on Neural Networks (pp. 3880-3887). IJCNN. 

[9] Bronstein, M. M. (2017). Geometric Deep Learning: Going beyond Euclidean 
data. IEEE Signal Processing Magazine, pp. 18–42. 

[10] Yue, Y. &. (2020). Point Registration Approach for Map Fusion. In Y. &. Yue, 
Collaborative Perception, Localization and Mapping for Autonomous Systems 
(pp. 29-45). Springer. 

[11] Deretsky, Z. &. (1993). Automatic conflation of digital maps. Proceedings of 
VNIS '93 -Vehicle Navigation and Information Systems Conference. IEEE. 

[12] Hochreiter, S. &. (1997). Long short-term memory. Neural Computation, pp. 
1735–1780. 

[13] Dongcai, H. (2013). A Study on Theory and Method of Spatial Vector Data 
Conflation. Research Journal of Applied Sciences, Engineering and Technology, 
563-567. 

[14] Goyal, P. &. (2017). Graph Embedding Techniques, Applications, and 
Performance: A Survey. Knowledge-Based Systems. 

[15] Grover, A. &. (2016). node2vec: Scalable Feature Learning for Networks. KDD: 
proceedings. International Conference on Knowledge Discovery & Data 
Mining. 

[16] Kipf, T. & W. (2017). Semi-Supervised Classification with Graph Convolutional 
Networks.International Conference on Learning Representations. 

[17] Heimann, Mark & Shen, Haoming & Safavi, Tara & Koutra, Danai. (2018). 
REGAL: Representation Learning-based Graph Alignment. 117-126. 
10.1145/3269206.3271788. 

[18] Faerman, E., Voggenreiter, O., Borutta, F., Emrich, T., Berrendorf, M., & Schubert, 
M. (2019). Graph Alignment Networks with Node Matching Scores. 

[19] E. Safra, Y. Kanza, Y. Sagiv & Y. Doytsher (2013) Ad hoc matching of vectorial 
road networks, International Journal of Geographical Information Science, 27:1, 
114-153, DOI: 10.1080/13658816.2012.667104 

[20] Filin, S., & Doytsher, Y. (2000). A Linear Conflation Approach for the Integration 
of Photogram-metric Information and GIS Data.  

[21] Yair Gabay and Yerahmiel Doytsher. AN APPROACH TO MATCHING LINES 
IN PARTLY SIMILAR ENGINEERING MAPS. GEOMATICA. 54(3): 297-310. 
https://doi.org/10.5623/geomat-2000-0042  

 
 
 
 


